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Executive Summary 
Fueled by burgeoning e-commerce, urban parcel delivery has emerged as a high growth market that is 

undergoing rapid technological change, particularly in the business-to-consumer segment. New classes of 

vehicles such as drones, droids, and autonomous ground vehicles, combined with new delivery models 

featuring crowdsourcing, parcel lockers, and mobile lockers will enable a significant shift away from the 

conventional model of a dedicated delivery person operating a van. In order to attain the full potential of these 

changes to reduce costs and increase convenience, it is necessary to develop a complementary set of demand 

management strategies that will enable the next-generation parcel delivery system to mitigate current traffic 

congestion problems and avoid creating new ones. The project aims to (1) quantify the current and anticipated 

future contributions of urban parcel delivery to urban congestion and related problems, such as traffic 

accidents; (2) identify opportunities for incentivizing consumers and delivery services to modify their behaviors 

in order to reduce the congestion impacts of urban parcel delivery. To accomplish these objectives, we have 

been focusing on (1) demand models of e-commerce behaviors, (2) measuring the impact of delivery service 

operations on urban congestion using macroscopic fundamental diagrams, and (3) urban operations of drone 

deliveries to assess their potential of removing parcel delivery demand on the roads. The modeling system will 

be used to assess the congestion reduction benefits of a range of policies geared toward encouraging 

consumers and service providers to adopt behaviors that reduce the congestion caused by urban delivery. 

The COVID-19 pandemic brought about dramatic shifts in travel, including shopping trips. We investigated 

changes in e-shopping for food and non-food items by supplementing an April to May 2018 household travel 

survey (n=3,956 households) conducted by the Sacramento Area Council of Governments (SACOG) with a May 

2020 follow-on panel survey (n=313 households) for one week early in the pandemic. Results demonstrate that 

impacts from added pickups and deliveries in the SACOG region during the first two months of the COVID-19 

pandemic were limited and did not overwhelm curb management at retail, restaurant, and grocery 

establishments. Results also show that during the pandemic e-commerce tended to replace non-food shopping 

trips, but complemented restaurant and grocery trips. However, Forty percent of the sample households — 

predominantly lower income and/or older populations — still shopped only in-store for food while more 

affluent households appear to have isolated themselves from virus exposure through more extensive online 

shopping. We recommend extending the forms of accepted payment for online shopping and reducing fees and 

markups based upon payment method to reduce barrier to online shopping for those with limited resources. 

We identify possible consequences (e.g., more vehicle miles traveled and higher demand for curbside parking) 

if e-commerce food purchasing continues to grow post-pandemic or if in-person retail shopping returns to 

normal. 

Delivery Service Providers (DSP) are affecting road delay and air pollution by parcel delivery traffic in different 

ways. Parked DSP vehicles reduce the amount of available parking for other road users, which induces cruising, 

which causes extra delay, pollution. The Macroscopic Fundamental Diagram is used to measure the impact of 

delivery service operations on urban congestion. A vehicle traffic simulation is set up to model delivery vehicle 

stops, where the vehicles double park and restrain the traffic flow during the stop. As a result, the network 

capacity declines by a certain amount. A theoretical model is developed to predict the reduced amount of 

network capacity because of these stops.  
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The development in e-commerce presents the major driver for drone-based deliveries, which are traditionally 

made by truck and van, as an increasing number of urban residents rely on the Internet rather than going to 

brick-and-mortar stores for shopping. The increasing parcel delivery demand contributes to greater traffic 

congestion in road transportation system. UAV delivery utilizes the low-altitude airspace resource, and demand 

shifting from road traffic to air help mitigate the road traffic congestion situation. In addition, UAV delivery has 

shorter delivery times, lower maintenance costs, and environmental friendliness than traditional parcel 

delivery. We propose a framework of UAV system traffic management in the context of parcel delivery in low-

altitude urban airspace, including clustering-based UAV path planning, systematic UAS traffic management with 

conflict resolution, and mechanism design for airspace resource allocation. Four traffic management models 

are proposed and especially the Batch Optimization (BO) model that strikes a balance between seeking a 

system optimum solution and maintaining computational tractability. Extensive numerical analysis is conducted 

with San Francisco as the case study area. Our results show the effectiveness of the proposed framework, 

particularly the scalability of the BO model compared to the other two models in UAS traffic management. We 

also find that payment by a UAV flight under the proposed mechanism depends critically on traffic density and 

the extent of interaction the UAV flight has with other flights. 

The emerging UPD technologies will change the traffic pattern on surface roads. Not only the operations but 

also the safety performance of the roadway system will be impacted by the new technologies. The new UPD 

technologies may reduce the exposure of surface UPD trips that is positively associated with UPD crash risks; 

meanwhile, the replacement of human-driving UPD vehicles with autonomous ground vehicles may reduce the 

likelihood of UPD crashes by eliminating human errors that are the primary contributing factors in traffic 

crashes. In addition, the reduction of UPD crashes will mitigate non-recurring congestions caused by incidents. 

This study proposed an analytical framework to estimate the safety benefits, including non-recurring 

congestion reductions, by implementing innovative UPD technologies. As the first step, the research developed 

a procedure to identify UPD crashes (the most significant challenge in UPS safety studies). Based on the 

identified UPS crashes in Florida, the research team developed a statistical model to estimate UPD frequencies 

given demographic, traffic, and roadway information at Traffic Analysis Zone levels. The analysis framework, 

identification methods, and the preliminary model developed in this study can be the basis for assessing the 

comprehensive benefits of innovative UPD technologies and provide supporting decision making in developing 

and implementing the new technologies. 
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 Introduction 
 

This study aims to investigate how growth of urban parcel delivery demand may affect future traffic in urban 

areas, and how these impacts may be mitigated through, among other possibilities, increased use of non-road 

vehicles, such as UAVs. 

We begin with an investigation of consumer demand for urban deliveries (Chapter 1). COVID-19 travel and 

business restrictions and closures present an opportunity to gain insights into how individuals with varying 

levels of technological capability, Internet-connectedness, personal mobility, and other key factors are 

managing their purchasing needs in a time of constrained travel. The transportation literature has long focused 

on the relationship between e-commerce and online shopping and personal shopping trips. Recently, the 

Sacramento Area Council of Governments (SACOG) addressed these questions in its 2018 household travel 

survey (HTS). Unfortunately, the unexpected pandemic rendered much of the information collected from this 

survey outdated or irrelevant. For example, changes in consumer shopping may be generating second-order 

effects (e.g., changes to curb use, changes in household car ownership) and even third-order effects (e.g., 

changes in land use). As such, it is important to develop a clear picture of these pandemic-influenced behaviors 

and how they could play out in the future. The first part of this research supplements recent 2018 HTS data 

with online surveys conducted during the early months of COVID-19 Stay at Home orders to develop a greater 

understanding of current and future online shopping patterns. Importantly, also examined are the demand for 

curbside pickup on public streets and in off-street lots for making deliveries.    

Some pandemic effects may be present for years to come, and stakeholders at the local and regional levels will 

need to develop flexible strategies and infrastructure to deal with rapidly changing circumstances as counties 

and regions move forward with different stages of re-opening. Many cities, such as Los Angeles, Oakland, and 

San Francisco, greatly relaxed or eliminated parking meter enforcement at the beginning of the Stay-at-Home 

orders and/or are exploring expedited temporary loading zone applications (e.g., Sacramento, Oakland) and 

permits as part of pilot programs. Additionally, companies are responding to the pandemic in many ways, such 

as implementing waiting lists for online shopping services (teamocado, 2020; Petrova, 2020; Perez, 2020), 

constructing more urban delivery centers (Martineau, 2020), converting closed retail locations into online 

fulfillment centers (Kang, 2020), or instituting specific fees for e-commerce parcels (Ziobro, 2020). These 

shifting market realities are presenting consumers with different options from which to choose for their 

shopping needs compared to before the pandemic. This study examined changes in household travel behavior 

under such circumstances. 

Recent work has focused on shopping motivations and consumer attitudes in explaining shopping behavior 

(Punel & Stathopolous, 2017; Le & Ukkusuri, 2019), and preliminary work since the onset of the pandemic has 

shown marked shifts in shopping behavior (Holguín-Veras & Encarnacion, 20202; Wunderman Thomson, 2020). 

Additionally, new open-sourced datasets from private companies (Contentsquare, 2020; Google, 2020) and 

publicly available data have revealed dramatic shifts in the retail purchasing habits of American consumers in 

response to Stay-at-Home orders and uncertain economic circumstances. No studies to date, however, have 

examined both changes in online consumer purchasing and e-commerce delivery service operations or their 

collective impact on public infrastructure. The first part of this study in chapter 2 fills in those gaps.  
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Delivery Service Providers (DSP) are affecting road delay and air pollution by parcel delivery traffic in different 

ways. These impacts are investigated in Chapter 3. The miles traveled increase overall travel demand, which 

affects other road users and increases delay and emissions. Parked DSP vehicles reduce the amount of available 

parking for other road users, which induces cruising and causes extra delay and pollution. Double-parking 

occurs when drivers are unable to locate a parking spot near their destination; DSP vehicles may park in street 

lanes, thereby creating a bottleneck, possibly the largest source of delay and pollution, and reduces street 

network capacity. This second part of this study measured the effect of DSPs on traffic outcomes including 

Vehicle Miles Traveled (VMT), arrival delay and air pollution. The Macroscopic Fundamental Diagram (MFD) 

was used to measure the impact of delivery service operations on urban congestion, which can be expressed as 

the relationship between number of vehicles in the system and the number of trips per unit of time and 

occupancy and VMT per unit of time, occupancy, and speed. A vehicle traffic simulation was set up to model 

delivery vehicle stops, where the vehicles double-parked and restrained traffic flow during the stop. 

Chapter 4 examines the role UAV delivery in offloading deliveries from road vehicles. As a result of the large 

volume of parcel delivery, there has been an increasing number of delivery trucks and vans entering and driving 

around cities every day and contributing to greater traffic congestion, air pollution, noise, road deterioration, 

and safety concerns. Many delivery service providers, including Amazon, UPS, and DHL, have opened urban 

warehouses near or in city centers from which last-mile deliveries to customers are performed (Haag & Hu, 

2019; Young, 2020a; Young, 2020b). The large number of online orders from restaurants, stores, and urban 

warehouses, especially during the pandemic, along with the expectation of delivery within an order of hours 

(SupplyChainBrain, 2020) have exacerbated the need for new delivery solutions to meet demand. 

Although various innovations have been considered (Kafle et al., 2017; Ranieri et al., 2018; Le et al., 2019; van 

Duin et al., 2020; González-Varona et al., 2020), delivery by Unmanned Aircraft Vehicles (UAVs) (drones) is 

increasingly perceived as an integral part of the future solution for urban freight movement to provide fast, 

point-to-point deliveries, and industrial and commercial applications of drones have been proliferating over the 

last few years. As part of the parcel delivery demand shifting to the air, UAV delivery helps mitigate the traffic 

congestion in the road transportation system. Established logistics companies and startups have already begun 

using drones for package delivery; FedEx Express and Wing Aviation recently completed their first scheduled 

commercial-to-residential drone deliveries in the US (Norman, 2019). In 2019, UPS received the first broad 

Federal Aviation Administration (FAA) approval for drone delivery (Josephs, 2019), and Amazon also received 

approval for its Prime Air drone delivery fleet (Palmer, 2020); the cost of delivery per package is estimated to 

be only two thirds or less of traditional ground vehicle-based delivery (Sudbury & Hutchinson, 2016). 

UAV delivery has several advantages over traditional parcel delivery, such as shorter delivery times, lower 

maintenance costs, and environmental friendliness (Lee et al., 2016; Lim & Jung, 2017). When deployed at a 

sufficiently large scale, UAV delivery may also help reduce road safety risks and mitigate traffic congestion on 

the ground. Moreover, as a result of the pandemic, the trend of shifting from physical stores to online shopping 

has been accelerated by roughly five years (Perez, 2020), thereby imposing even greater pressure on logistics 

service providers, which are struggling to solicit sufficient workers to meet delivery requests, particularly 

ensuring that orders arrive to customers within promised time windows. In the midst of the pandemic, delivery 

workers are exposed to a high risk of virus infection due to frequent contact with store staff and customers 

during order pickup and delivery. Once they are infected, the virus can quickly spread to more people as well as 
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locations. UAV delivery, which is contact-free, can help mitigate the spread of the virus and solve the imbalance 

between order demand and delivery capacity—if not for the current pandemic, then perhaps for a future one. 

With potentially large demand for UAV delivery in the foreseeable future, the need for and importance of 

efficiently managing UAV traffic in urban airspace is increasing. Many countries have already started developing 

traffic management methods for UAV operations (Kopardekar et al., 2016; Unmanned Airspace, 2019), and the 

subject has attracted much interest in the research community (Labib et al., 2019; Ho et al., 2019). Although 

there is a body of literature on how to optimally configure urban delivery systems with UAVs from the 

perspective of formulating and solving vehicle routing problems, most existing research does not consider the 

UAV delivery problem in the context of path conflicts and airspace congestion. The ability to safely and 

efficiently resolve conflicts will become increasingly urgent as the use of UAVs for urban package delivery and 

other purposes intensifies. There has been little research on integrating UAS traffic management with UAV 

delivery. The study of strategic traffic management in the context of an UAV delivery system, in particular the 

systematic efficient allocation of congestible airspace resources to UAVs, is particularly lacking. Prior work on 

planning UAV delivery systems has focused on problems such as the UAV vertiport facility location problem 

(Vascik & Hansman, 2019; Fadhil, 2018; Rath & Chow, 2019), maximizing the number of delivered packages by 

UAV while satisfying battery consumption constraints (Kim et al., 2020), and evaluation of collision risk in small 

UAV systems (Weinert et al., 2018). None of these studies are concerned with identifying and efficiently 

resolving path conflicts in in a UAV system that features the high traffic intensities that may be required to 

meaningfully relieve road congestion or reduce pandemic spread. The third part of this research in chapter 4 

attempts to fill this gap. 

Emerging urban parcel delivery (UPD) technologies will fully change the traffic pattern on surface roads; 

consequently, the technologies will influence not only operations but also the safety performance of the 

roadway system. The is the focus of Chapter 5. The new UPD technologies may reduce the exposure of surface 

UPD trips that is proportional to UPD crashes; meanwhile, the replacement of human driven UPD vehicles with 

autonomous ground vehicles may reduce the likelihood of UPD crashes by eliminating human errors that are 

the primary contributing factors in traffic crashes. In addition, the reduction of UPD crashes will mitigate non-

recurring congestion caused by incidents (25 percent of congestion) (FHWA, 2021).   
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Figure 1-1. Impacts of emerging UPD technologies on safety and non-recurring congestion 

A few previous studies were found that examined parcel delivery-related crashes and associated contributing 

factors. A previous study (Byun et al., 2017) examined the contributions of motorcyclist-related and accident-

related characteristics to food delivery motorcycle crashes in South Korea and reported that the factors of rider 

age, gender, work experience, company scale, and time of day impact food delivery motorcycle crash risk. 

Another study (Ibrahim et al., 2018) used cameras to monitor 15 courier riders’ hazards and crash scenarios 

during their delivery trips in Malaysia and found that “a courier rider encounters 30 hazardous riding events 

and 5 near misses on average for each hour of delivery trip.”  The identified contributing factors include 

obstruction of view and lane changing and overtaking maneuvers and involved riding/driving behaviors. Chung 

et al. (2014) investigated the injury severity of crashes involving delivery-purpose motorcycle and vehicle in 

metropolitan areas in Korea. The modeling results showed that violation behavior involving improperly weaving 

through traffic and crossing the center line are more likely to cause severe injuries in delivery-motorcycle 

crashes. Xie et al. (2015) explored the safety impacts of shifting delivery truck trips from daytime regular hours 

to nighttime off-hours. A safety performance model developed was developed based on truck crashes, traffic 

volume, and geometric design features collected on 256 road segments in Manhattan, New York. A multivariate 

Poisson-lognormal model with integrated with measurement errors was used to address the inherent 

correlation of specific truck crash types. Results revealed that off-hour delivery does not significantly increase 

the overall risk of truck crashes compared to daytime delivery. 

There are some limitations in the previous studies—three studies (Byun et al., 2017; Chung et al., 2014; Ibrahim 

et al., 2018) conducted analysis at the crash level and did not develop models to predict delivery crash 

frequencies based on regional characteristics (demographic, geometry, and traffic), and one study (Xie et al., 

2015) modeled truck crashes at the segment level; however, it did not distinguish parcel delivery crashes and 

trips from general truck crashes and traffic. No studies or methods were found to address the safety impacts of 

UPD delivery modes. 
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 Demand Models of E-Commerce Behaviors 
Due to the COVID-19 pandemic, beginning in March 2020, many regions in the US experienced rapid changes in 

travel patterns, with much of the populace staying at home for work and school and reducing out-of-home trips 

for shopping, entertainment, socializing, and personal business. This led to an increase in the use of retail 

purchase pick-up and delivery services, exacerbating concerns around traffic congestion and curb management 

problems in large cities such as New York and San Francisco. Questions arise in addition to these about whether 

concerns also apply in mid-sized cities and whether an increase in shopping from home leads to a proliferation 

of issues with pickups and deliveries. To gather more information about mid-sized California cities, participants 

were re-sampled from the 2018 Sacramento Area Council of Governments (SACOG) household travel survey 

(2018 HTS) of 8,191 individuals, representing 3,956 households, over a rolling six-week period from April to 

May 2018.  This was the first region in the state to collect detailed information on e-commerce use and use 

behavioral modeling to compare pre-pandemic shopping to pandemic-related shifts in consumer purchasing 

and receipt for nine types of essential and non-essential commodities (including groceries, meals, clothing, 

paper products and cleaning supplies). Responses were collected from 327 individual respondents, 

representing 313 households, in May 2020. Descriptive statistics were developed to examine changes in weekly 

shopping trips and online ordering during the pandemic to assess likely traffic and curb use impacts. 

Respondents were also asked about their prospective behavior once the pandemic ends, and considered were 

if and how current changes might persist in the future based on their responses.  

In comparison to the 2018 HTS data, 2020 respondents reported all household behavior for an entire week via 

one online survey, showing purchases at a much higher level of commodity detail than in 2018; the interaction 

between the 2020 and 2018 commodity types is shown in Table 2-1.  

Table 2-1. Comparison of Commodity Categories between 2018 HTS and 2020 Supplement 

Survey Parcel (non-food) Food 

2018 HTS 
Other routine shopping—FedEx, UPS, 
USPS packages 

Groceries Take-out, meals 

2020 Supplement 

Clothing, paper products and cleaning 
supplies; * home office items; 
medication; * childcare items; * other 
non-food items 

Groceries Prepared meal or beverages 
(i.e., from restaurant or café) 

Other food items (e.g., specialty foods, farmer's 
markets, farm boxes, meal preparation kits) 

*Indicates an essential non-food commodity; all food commodities are considered essential. 

Using the subsample responses from both 2018 and 2020, a multinomial logit (MNL) model was estimated with 

four possible household outcomes during the observation week-1) no shopping, 2) only in-person shopping, 3) 

only online shopping, and 4) both in-person and online shopping.  As these four outcomes were mutually 

exclusive for any given week, an MNL model was selected to provide a view of what variables influence the 

likelihood of each outcome.  MNL models can be used, for example, to answer how much more likely a female-

identifying individual is to shop online for food than a male-identifying-individual, both pre- and post-

pandemic.  This type of framework is useful for analyzing population level demographic differences in behavior 

and can be used to produce estimates for behavior in light of different policy interventions. Importantly, MNL 

models do not assign any causal relationship between variables; they only provide an explanation of 

differences. Modeled separately were food and non-food weekly shopping patterns because it was 

hypothesized that the motivations for food and non-food purchases are quite different, as evidenced by the 
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rates shown in Table 2-2. Table 2-3 shows the food MNL model results with selected significant variables; the 

same also applied to non-food shopping. 

Table 2-2. Rates of Shopping Patterns, 2018 

Weekly Pattern 
Percent of rMoves Sample 

(n=2,838) 
Percent of 2020 COVID-19 
Subsample (2018) (n=313) 

Non-food Food Non-food Food 

Only in-person shopping 27.4 88.4 26.3 87.5 

Both in-person and online shopping 44.2 7.7 51.7 9.8 

Only online shopping 14.5 0.2 12.5 0.0 

No shopping 13.9 3.7 9.4 2.8 

 100 100 100 100 

Table 2-3. Food MNL Model Results with Selected Variables 

 

2018 & 2020 
Parameters 

2020 COVID-19 
Subsample 
Parameters 

Parameter 
Std. 

Error 
Parameter 

Std. 
Error 

ASC No shopping -6.05*** 1.35 3.58* 1.99 

ASC Online only   -3.62*** 1.35 

ASC Both in-person and online -2.69*** 0.67 2.38*** 0.83 

Single Person HH - No shopping 1.86** 0.85 -2.65 1.88 

Single Person HH - Both in-person and online -2.05*** 0.79 1.69* 0.91 

HH Income 100k+ - No shopping 0.97 1.08 -3.04* 1.72 

HH Income 100k+ - Both in-person and online 1.05* 0.60 -0.70 0.71 

Female-identifying - Online only   1.75** 0.85 

Female-identifying - Both in-person and online 0.76* 0.43 -0.83 0.51 

Respondent had travel disability - No shopping 2.00** 1.00 -1.85 1.47 

Respondent had travel disability - Both in-person and online 1.21* 0.73 -1.22 0.87 

Unknown disability status - No shopping   -2.24** 1.09 

Amazon Prime: member since at least 2018, both in-person and online -0.64 0.42 1.57*** 0.50 

Grocery delivery: COVID signup - No shopping   3.06* 1.63 

Grocery delivery: COVID signup - Online only   2.66** 1.08 

Shared burden for all shopping needs - No shopping   2.11* 1.15 

Shared burden for all shopping needs - Online only   -2.02* 1.10 

Results demonstrate that impacts to curb management in the SACOG region during the first two months of the 

pandemic and response were limited and did not overwhelm existing infrastructure at retail, restaurant, and 

grocery establishments. Pandemic-induced changes to retail shopping varied widely by commodity. Although 

overall trip making fell 54 percent during the 2020 observation week compared with 2018, e-commerce 

ordering replaced a large percentage of non-food trips, with such deliveries down only 2 percent. On the other 

hand, e-commerce food deliveries rose 375 percent, with purchases and pickups complementing restaurant 

and grocery trips (and potentially inducing some additional grocery trips). Even with that level of increase in 

deliveries, it was found that e-commerce food purchases did not result in comparable reductions in in-person 

trips for food items (e.g., restaurant food, groceries, etc.), as 85 percent of food purchases among the sample 

population involved taking a trip.  
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Even facing a global pandemic, it is observed that 40 percent of the sample population shopped only in-store 

for food during the observation week. Model results indicate that these shoppers were more likely to be older 

and from households earning below the median. Those households that did not change their shopping behavior 

during the pandemic may represent e-commerce laggards in the future. Conversely, more affluent populations 

demonstrate a strong shift toward e-commerce, shopping online for non-food items and complementing in-

person food shopping with e-commerce during the pandemic. Taken together, these results signal a higher 

exposure risk in populations (e.g., older adults) that may be more vulnerable to serious complications from 

contracting COVID-19 and/or higher exposure to the virus due to performing essential work.  

Demographic variables shown to be highly significant in explaining weekly shopping decisions prior to the 

pandemic (e.g., gender, household income, household size) do not explain changes to trip-making and 

e-commerce ordering frequency in May 2020. This suggests that the major factors affecting pandemic shopping 

behavior may not be captured by demographic information collected by standard transportation data 

collection efforts. Lifestyle variables, such as household Amazon Prime memberships, positively and 

significantly affect the likelihood of households shopping online for food and non-food items. This points to the 

influence of non-food shopping services on food shopping, and a need to collect more household information 

(e.g., physical and digital subscriptions, credit card-based e-commerce incentives) to help explain these new 

shopping patterns. Additionally, there was a large proportion of new e-commerce food shoppers, with a 25 

percent signup rate for groceries and 22 percent for prepared food. Among these new users, observed were a 

strong shift toward shopping only online for food and a limit on the frequency of-in person shopping. This 

safety-minded behavior may be tempered by high demand for and difficulty finding delivery slots, particularly 

for groceries.  

Also examined were changes in weekly household shopping between 2018 and 2020 with descriptive statistics. 

Table 2-4 and Figure 2-1 show a shift away from in-person shopping only toward complementing in-person 

food shopping with e-commerce. About two-thirds of those who did in 2018 continued to do so, but almost 

one quarter shopped in person only in 2020. Figure 2-2 shows the weekly parcel shopping changes from 2018 

to 2020. 

Table 2-4. Changes in Food Shopping, 2018–2020 

2018 Weekly 
Behavior 

2020 weekly behavior (n=313) 
2018 Total In-person 

Shopping Only 
Both In-person 

and Online 
Online 

Shopping Only 
No Shopping 

In-person only 41% 51% 5% 2% 286 (87%) 

Both 22% 69% 3% 6% 32 (10%) 

Online only 0% 0% 0% 0% 0 (0%) 

No shopping 56% 11% 22% 11% 9 (3%) 

2020 Total 130 (40%) 169 (52%) 18 (6%) 10 (3%) 327 
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Figure 2-1. Addition of e-commerce food purchasing to in-person behaviors, 2020 

 

Figure 2-2. Weekly parcel shopping, 2018–2020 

In light of these results, it is suggested to improve future analyses by using consistent definitions of 

e-commerce and collect more precise information about shopping, particularly online shopping. Also suggested 

are strategies to expand e-commerce access—particularly for food—to a broader range of people by:  

• Expanding the forms of payment accepted 

• Limiting item markups and/or fees based upon payment type  

• Offering call-in order options  

The curbside and parking implications of these demand shifts for different types of commodities were 

addressed. Given the stated 5-10-year growth acceleration of retail e-commerce predicted by some experts 

(e.g., Mahmassani et al., 2020), the likelihood and implications that certain behaviors will persist after the 

pandemic was addressed. If food e-commerce continues to complement and/or begins to induce additional 

trips the sustainability benefits (i.e., lower VMT) from food e-commerce delivery, economies of scale could 
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diminish and the demand for short-term parking and loading at restaurants could eclipse that of longer-term 

metered parking.  

Respondents indicated that once the pandemic is over, they plan in-person non-food retail shopping. If so, in-

person shopping trips may rise even more if the pandemic substitution effect of e-commerce on trip-making 

shrinks. As concerns about virus transmission decrease with more widespread vaccination and immunity, many 

of those currently using grocery ordering platforms may return to in-person shopping, undercutting the growth 

of e-commerce.  

As states and the nation progress toward post-pandemic life, emerging and pandemic-induced long-term 

changes in business (e.g., more outdoor sidewalk dining, increased curbside pickup) could compete for curb 

space with traditional curb uses, including long-term metered parking. Thus, policymakers will need to balance 

the needs of all types of curb users and make safety—both health and traffic-related—a priority. 

Conclusions 

In this study, we observed a concentration of exposure among populations at higher risk for serious 

complications from the COVID-19 virus and populations with fewer means. Households should not have to 

weigh making a trip to the store to put food on the table with exposing themselves to a deadly virus; however, 

this behavior evident in the news and in the study sample; this was a key takeaway from this study. Households 

continuing to shop only in-person were overrepresented by those earning under $50,000 per year, male-

identifying survey respondents, and older survey respondents, particularly those over age 65. Conversely, 

households earning $100,000 per year are underrepresented in this subgroup, as are younger survey 

respondents (below age 35). This points to a concentration of risk and potential exposure among older and less 

affluent households, who may be most vulnerable to serious complications from contracting COVID-19. 

Also addressed are curbside and parking implications of these demand shifts for different types of 

commodities. Given the stated 5–10-year growth acceleration of retail e-commerce predicted by some experts 

(e.g., Mahmassani et al., 2020), the likelihood and implications that certain shopping behaviors will persist after 

the pandemic are addressed. If food e-commerce continues to complement and/or begins to induce additional 

trips the sustainability benefits (lower VMT) from food e-commerce delivery, economies of scale could 

diminish, and the demand for short-term parking and loading at restaurants could eclipse that of longer-term 

metered parking.  

As states and the US progress toward post-pandemic life, emerging and pandemic-induced long-term changes 

in business (e.g., more outdoor sidewalk dining, increased curbside pickup) could compete for curb space with 

traditional curb uses, including long-term metered parking. Thus, policymakers will need to balance the needs 

of all types of curb users and make safety—both health and traffic-related—a priority. 
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 Impact Measurement of Delivery Service Operations  
on Urban Congestion  

Variables Impacted by Urban Congestion 

The impact of Delivery Service Operations (DSO) on traffic outcomes was measured, including delay and air 

pollution. Traffic delay is the difference between the actual arrival time of road users and their desired arrival 

time. Air pollution is the total emission of 𝐶𝑂2,  𝑁𝑂2,  𝑃𝑀 − 2.5. and other polluting substances.  

There are several ways in which DSO can impact delay and air pollution. The first is via VMT—DSO adds traffic 

demand to the road and burns fuel, which increases total traffic volume, decreases average speed, and 

increases delay and air pollution. The second is via parking spaces—DSO vehicles that park take up parking 

places that would otherwise be used by other users, which increases cruising, congestion, delay, and air 

pollution. Third, DSO vehicles often double-park, thereby blocking lanes of traffic. Such blockages introduce 

additional bottlenecks into the street network and reduce the flow of traffic. This study focused on the impact 

of double-parking of DSO vehicles on network traffic flow, as it is the factor that impacts delay and air pollution 

the most by indirectly slowing down other road users. 

MFD Function 

The impact of DSO on urban traffic was measured within the so-called Macroscopic Fundamental Diagram 

(MFD) framework (Figure 3-1). MFD is a function that relates varies network-level traffic variables to each 

other. For example, it expresses traffic flow as a function of the number of vehicles in the network and average 

network speed as a function of the number of vehicles. MFD is a useful tool for analyzing DSO effects, as it is 

demand-independent and can be used to analyze DSO impact under any scenario.  

The goal of this study was to analytically approximate the impact of DSO on network capacity and compare the 

theoretical prediction to the network flow observed in simulation of street traffic. 

 

Figure 3-1. Macroscopic Fundamental Diagram for city neighborhood  
Source: Loder, A., Ambühl, L., Menendez, M., et al. Understanding traffic capacity of urban networks.  

Sci Rep 9, 16283 (2019) 
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Effect of Double-Parking on MFD 

This study notes that double-parking delivery vehicles change the shape of the MFD function, which can have 

dramatically varying effects on the road network. In many cities, these effects may not be observable by the 

existing observations of delivery operations due to the relatively low volume of operations. As DSO volume 

increases in the future, the effects will become more apparent. 

This point is illustrated in Figure 3-2, which shows two MFDs for a notional city street network. Higher MFD 

corresponds to the scenario with no DSO operations and, therefore, unconstrained flow; this is the “initial” 

MFD, before DSO effects. The lower MFD corresponds to the scenario with lower flow that results from DSO-

induced network blockages that we discussed above; this is the “final” MFD. 

 

Figure 3-2. Effect of double parking on MFD—accumulation-flow MFD (left), accumulation-speed MFD (right) 

There are two general scenarios. The first scenario (green dots) is relatively benign. The initial state on the 

initial MFD is in the unconstrained region of the MFD. In this region, increased demand on the network is 

satisfied, as there is not gridlock present. Adding more vehicles on the road leads to increasing traffic flow. If DS 

operations are introduced into the network, the MFD is lowered, but the final traffic state of the network 

remains in the unconstrained region. The result is that traffic flow is reduced slightly.  

The second scenario is more extreme. In it, the initial traffic state is at the peak of the MFD. This means that the 

network is operating at capacity; therefore, adding more vehicles to the network will uncontrollably reduce 

traffic flow until the entire network is paralyzed with gridlock. Once the DS operations are present, the MFD 

switches to the final MFD function. As a result, the initial traffic state now moves from the capacity state to the 

constrained portion of the MFD. If input controls are absent (no traffic management), the number of vehicles in 

the network increases with time. As the new traffic state is now in the constrained portion of the MFD, an 

increase in the number of vehicles leads to a decrease in traffic flow. The network now is in the feedback loop, 

where traffic flow keeps decreasing indefinitely until the network is paralyzed with gridlock. In this case, the 

impact of DSO is very large; traffic flow decreased from the maximum level allowed by the network to zero.  



14 

 

The flexibility of the MFD framework is such that these extreme scenarios, as well as any other scenarios, can 

be easily modeled without the need for much observational data. If the mathematical expression is obtained 

for the MFD as a function of DSO operational variables, changes in speed, delay, and air pollution in the entire 

network can be predicted. This study focuses on the simulated impacts of DSO on network capacity. In 

principle, this can be extended to model the impact of DSO on the whole shape of the MFD, not just the 

capacity—the maximum of the MFD. 

Simulation and Results 

A microscopic network traffic simulation was set up using Aimsun simulation software and run for a 10x10 

square grid street network with 400 links and 100 intersections. All intersections were identical and have the 

same green and red times and no offsets. It was assumed that streets have two lanes in each direction, and the 

double-parked vehicle stops in the right lane. To simulate the impact of DSO, delivery vehicle double-parked 

stops were simulated, such that the average stop time was equal, on average, to 5 minutes, and the number of 

stops per hour per link ranged between 0.25 and 12. The theoretical model predicts that traffic network 

capacity 𝑄𝑛𝑒𝑡𝑤𝑜𝑟𝑘  is given by the follow constraint:  

𝑄𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ≤ 𝑞𝑚

𝐺

𝐶
Δ 

where 𝑞𝑚 is the maximum unconstrained traffic flow through the intersection during the green phase of the 

traffic light, 𝐺/𝐶 I the proportion of time the traffic light is green, and Δ is the control parameter—the average 

proportion of time a double-parked vehicle is present at a given link. This parameter is equal to the product of 

average double-parked stop time and the average number of stops per unit of time. More DSO means that Δ is 

higher. The parameter varied between 0 and 1.  

Figure 2-3 shows the simulation results and the theoretical prediction for capacity as a function of the number 

of DSO double-parked stops. The x-axis corresponds to parameter Δ, and the y-axis is the measured network 

capacity. Black dots are average traffic capacity traffic states as measured over 12-minute periods, and the red 

line is the theoretical prediction. As shown, the prediction from the model is in good agreement with the 

results of the simulation—maximum traffic flow in the network is typically less than or equal to the constraint 

described above.  

In the future, this work can be extended in several ways. First, the shape of the entire MFD as the result of DSO 

operations can be modeled. Second, a large number of possible DSO scenarios and their impacts for various 

network configurations can be modeled. Third, the MFD model can be used to compute arrival delay and air 

pollution values that result from delivery service operations. 
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Figure 3-3. Observed traffic flow as function of stop duration 
Red line is theoretical expectation; black dots are observations from simulation. 
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 Traffic Management and Resource Allocation for  
UAV-based Parcel Delivery in Low-altitude Urban Space 

The explosive growth in e-commerce, increasing urgency of de-carbonization, and rapid advances in 

technologies and the gig economy are demanding and providing abundant opportunities for considerable 

efficiency improvements in UPD. In particular, the development in e-commerce is the major driver for drone-

based deliveries, which are traditionally made by truck and van, as an increasing number of urban residents rely 

on the Internet rather than going to brick-and-mortar stores for shopping. In New York city, for example, more 

than 1.5 million packages were delivered every day in 2019 (Haag and Hu, 2019). As a result of the large 

volume, we are seeing an increasing number of delivery trucks and vans entering and driving around cities 

every day, contributing to greater traffic congestion, air pollution, noise, road deterioration, and safety 

concerns. Shifting part of urban parcel delivery demand from road traffic to air mitigate the congestion 

situation in ground transportation system. In order to alleviate the demand pressure of road traffic, we focus 

on UAV system traffic management for the first year to allow demand shifting to air by UAV delivery.  

This research proposes a framework of UAV system traffic management in the context of parcel delivery in low-

altitude urban airspace, including clustering-based UAV path planning, systematic UAS traffic management with 

conflict resolution, and mechanism design for airspace resource allocation. The methodology herein includes 

four components required to simulate and evaluate the proposed strategic UAS traffic management—UAV path 

planning, conflict detection, and strategic conflict resolution. Also, as efficient conflict resolution requires 

truthful information about flight operator preferences, the fourth component is the design of a mechanism 

that induces truthful information reporting by UAS operators through a payment scheme.   

Deterministic Clustering-based UAV Path Planning 

The routing approach is simplified by assuming a set of discrete altitudes and finding the shortest 2D path at 

each altitude. The optimal travel altitude is determined by minimizing a linear cost function associated with 

both horizontal and vertical flying. To generate the most representative altitude candidates based on the 

topography of terrain and the elevation of building obstacles, a clustering approach is employed to characterize 

the height and proximity of the numerous static obstacles in a dense urban core area. Based on the generated 

altitude candidate set, horizontal shortest paths that avoid obstacles are then generated for each altitude 

candidate. The vertical and horizontal costs are compared to determine the optimal travel altitude and 2D 

cruise path at that optimal altitude. Also identified is an optimal 2D path at a different altitude, which may be 

used to resolve conflicts.  

Figure 4-1 shows the elevation map of all static obstacles in part of the San Francisco downtown area. The 

K-means clustering algorithm is applied to perform clustering over all virtual buildings. Through clustering, a 

very large number of elemental static obstacles will be represented as a much smaller number of clusters that 

are similar with respect to height and location (Figure 4-2). As noted, the horizontal shortest paths for each 

UAV mission are generated by the Saturated FM2 algorithm at each candidate altitude. Figure 4-3 shows the 

horizontal shortest obstacle-free path results of an OD pair. The optimal flight path is then determined by the 

one with least total travel cost, which is 108 meters in this specific case. 
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Figure 4-1. Virtual buildings of both geographic and above-ground obstacles in San Francisco 

 

 

Figure 4-2. Clustering results of San Francisco virtual buildings 
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Figure 4-3. Shortest horizontal obstacle-free path results by Saturated FM2 of one OD example 
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Traffic Management Models 

A range of traffic management models of varying sophistication is proposed, each of which aims to efficiently 

schedule and route each UAV flight while resolving UAV path conflicts. First, flight pairs whose candidate paths 

create a spatial conflict are detected. A spatial conflict is also as a temporal conflict if, based on the desired 

departure times of the two conflicted flights, there would be simultaneous occupancy of the conflict region. 

The temporal conflicts must be resolved by means of either departure delay or an alternative path. Traffic 

management models will decide how to assign delay or to reroute flights to resolve each temporal conflict.  

The alternative models, in order of simplicity, are the Sequential Delay (SD) model, the Sequential 

Delay/Reroute (SDR) model, and optimization models. The SD model assigns flights a priority order and resolves 

a conflict between two flights by delaying the flight with the lower priority. A desirable feature of this model is 

that it requires no inputs other than the desired routes and the flight sequence, which might be established, for 

example, by the order in which UAV flight requests are received by the traffic manager. The SDR model is also 

based on flight priority but may resolve a conflict either by delaying a flight or assigning the flight a different 

path (or possibly both). This model requires UAV operators to submit cost information so the operator can 

choose the conflict resolution strategy with the least cost.  

In contrast to the sequential models, the optimization model assigns delays and paths to minimize the total 

cost of eliminating all conflicts. For this model, the operator requires additional cost information for each UAV 

mission. Further, to assure that operators provide truthful information, this model must be paired with a 

mechanism design that is incentive compatible. Furthermore, the full optimization model is computationally 

intensive when traffic density is high. This motivates a variant of the model that assigns flights in batches that 

are constructed so that most conflicts are between flights in the same batch. The full and batch optimization 

models are named FO and BO, respectively. Flight conflicts between batches are resolved sequentially based on 

batch priority.  

Table 4-1 shows the results of four traffic management model with 1000 UAV missions scheduled to depart in 

30 minutes time interval. As expected, the FO model yields the smallest system cost and the SD model yields 

the largest. The system cost from the BO model is in between, which is expected, as it performs optimization 

based on decomposed flight clusters. The system cost increases as the length of the time period decreases. 

Note that the system cost difference among the four models is very small relative to the absolute values of the 

total costs. This does not indicate these traffic management models are not efficient, as the system cost if all 

UAV flights taking their optimal paths without departure delay is also very large, at $227.  

Congestion cost, which is the system cost minus the ideal system cost ($227) is presented in Table 4-1 as well. 

Also reported are the amount of system delay, the number of delayed flights, and the number of flights taking 

alternative paths. Delays are much higher in the SD model, which does not allow altitude reassignment. The 

other model results do not exhibit clear trends with respect to delay and altitude reassignment. This is because 

these models are based on the cost of delaying or assigning new altitudes to flights, which is flight specific. In 

the 30-minute case, for example, the SDR model has fewer delayed flights and flights taking alternative paths 

than the BO model. Furthermore, the FO model is able to assign on average shorter delays to flights with 

smaller unit delay cost and, consequently, lower total cost.  
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The percentages of congestion cost saving of the three models are also presented, which are calculated as the 

difference of the congestion cost with respect to the SD model divided by the congestion cost of SD model. 

The percentages clearly indicate that all three models perform much better than the SD model. The FO model 

and the BO model consistently have congestion cost savings of above 90 percent in all four lengths of the 

simulation period. In contrast, the percentage of congestion cost savings for the SDR model diminishes as the 

simulation period becomes shorter, because it is not able to account for inter flight differences in delay cost 

when adjusting flight trajectories. Overall, the comparison results suggest that while the BO model yields a 

slightly suboptimal solution, the cost penalty is modest.  

Table 4-1: Comparison Results of Four Traffic Management Models 

 Length of Simulation Period (min) 

60 30 15 5 

Total cost ($) FO 227.2 227.6 228.0 228.5 

BO 227.3 228.1 228.7 229.5 

SDR 227.5 228.5 231.8 233.8 

SD 234.0 242.8 249.2 256.9 

Congestion cost ($) FO 0.2 0.6 1.0 1.5 

BO 0.3 1.1 1.7 2.5 

SDR 0.5 1.5 4.8 6.8 

SD 7.0 15.8 22.2 29.9 

Delay (seconds) FO 29 120 629 478 

BO 49 308 447 676 

SDR 69 340 1,328 1,569 

SD 2,133 4,475 6,243 8,254 

Number of delayed flights FO 5 16 20 29 

BO 5 20 25 28 

SDR 5 12 28 33 

SD 16 30 42 66 

Number of flights taking 
alternative (non-optimal) path  

FO 9 17 26 36 

BO 12 21 32 43 

SDR 11 12 27 40 

Percentage of congestion cost 
saving relative to baseline 

FO 96.8% 96.2% 95.5% 95.0% 

BO 95.2% 92.8% 92.4% 91.7% 

SDR 93.4% 90.4% 78.6% 77.2% 

Mechanism Design 

In the mechanism of traffic management, UAV flight schedules and paths are assigned to reduce the total cost 

of resolving all conflicts, based on the information from central controller. The central controller has the 

information on unit delay cost and path cost of all UAV flights. Such information is likely to be obtained by 

asking individual UAV operators. For example, the unit delay cost of an UAV flight may depend on the urgency 

of the package to be delivered. This gives rise to the issue of whether the information reported from each UAV 

operator is truthful, as a UAV flight may deliberately misreport the information to get a more favorable route 

or lower delay than from reporting truthfully (Zou et al., 2015; Ball et al., 2020). The section addresses this 

issue by adapting the Vickrey-Clarke-Groves (VCG) mechanism to the UAS traffic management context. 
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Under the assumption that a VCG mechanism is in place, the resulting payment for each of the 1,000 UAV 

flights is calculated for a 30-minute period. Figure 4-4 uses different colors to denote the payment of 1,000 

flights along with their paths assigned by BO model at an altitude of 77 meters. Conceptually, a flight with more 

conflicts tend to impose more “externalities” on other flights, thereby incurring more payment. It is observed 

that most UAV flights have relatively low payments. At the altitude of 77 meters, three flight paths on the left 

part of the graph do not conflict with any other flight at this altitude and have very low payment; however, the 

payment is non-zero, as some other flights may be assigned their second least-cost paths to avoid conflict with 

these paths.  

 

Figure 4-4. Visualization of paths colored by payments at altitude 77 meters 

This research proposes a framework of UAS traffic management including clustering-based UAV path planning, 

systematic UAS traffic management with conflict resolution, and mechanism design for airspace resource 

allocation. The UAV path planning algorithm takes advantage of clustering obstacles to generate representative 

altitude candidates, which is more efficient than the evenly spaced altitudes assumed in most research of UAV 

system planning and analysis. In determining the optimal travel path, the tradeoff between horizontal shortest 

path length and vertical travel distance at different altitudes is recognized.  

In addition, four traffic management models are proposed to systematically assigns schedules to UAV flights 

with conflict resolution. These traffic management models allocate spatial and temporal airspace resource to 

each UAV mission, while determining the departure time and which path to take for each UAV flight. The BO 

model, which can solve large-scale systems in short time while making a slight compromise on solution 

optimality, is more attractive than the FO and SDR models to solve large-size problems. Finally, as traffic 

management requires private information from UAV operators, it is important that the private information 

received is truthful. To this end, a VCG-style mechanism is adapted, in which the payment made by an UAV 

flight is the “externalities” caused by the flight to the rest of the system. Payment made by a UAV flight 

increases with traffic intensity and the extent of interactions a flight has with other flights.  

This study presents the beginning of integrating UAS traffic management with UAV delivery that deals with 

allocating spatial-temporal airspace resources to UAV missions. Multiple directions can be further explored in 
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future research. First, the BO model is proposed as an approximation of the FO model; further research could 

be directed to investigating other heuristic approaches to solve the FO model and comparing solution quality 

and computation efficiency. Second, stochastic factors could be introduced, for example, by accounting for 

uncertainties in weather and UAV performance (obstacle detection, flying stability, etc.) while determining the 

optimal and second-optimal paths of each UAV mission. Third, the performance of the different models could 

be tested in more areas with varying population density, tall building concentration, and terrain types, 

especially given the particular landscape and topology of San Francisco. Doing so will help glean more generic 

insights about UAS traffic management. Finally, as last-mile urban delivery is shifting toward nonmotorized 

vehicles and drones, it would be interesting to look into traffic management in a multimodal context involving 

UAVs and ground modes to enhance the overall efficiency of the delivery system while meeting demand. 
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 Urban Parcel Delivery Safety Impacts 
As the first step to investigating the impacts of innovative UPD technologies on safety and non-recurring 

congestions, this study aimed to develop an analysis framework for assessing the safety impacts and non-

recurring congestions of UPD modes, identify UPD crashes from historical crash database, and develop 

preliminary models to predict the UPD crash likelihood based on demographic, roadway, and traffic factors.  

Analysis Framework 

Based on the relationship among UPD modes, UPD crashes, and non-recurring congestions described in Figure 

1-1, the research team proposed an analysis framework as shown in 5-1. The framework includes three 

elements: 

• UPD Travel Demand Model to estimate the change of conventional UPD traffic in a spatial unit (i.e., 

TAZ, road segments, or others) due to the implementation of innovative UPD modes. The model could 

be statistical prediction models considering various explanatory variables or a simple estimation of 

reduction factors by different UPD modes. 

• UPD Crash Model to estimate the change of UPD crashes due to the change of surface UPD traffic.  

• Non-Recurring Congestions Model to estimate the non-recurring congestion caused by UPD crashes. 

The model could be a statistical prediction model or a calculation table (i.e., Exhibit 10-17, 2010 

Highway Capacity Manual) by different facility types. 

This study focused on the UPD crash model; two other models will be explored in future studies.  

Identification of UPD Crashes 

A UPD crash is defined as a traffic collision event in which at least one UPD vehicle is involved. In existing crash 

databases at national or state levels, there is no data field to indicate if UPD vehicles are involved or not. The 

absence of UPD crash data is a major challenge in modeling delivery-related crashes. To address the challenge, 

this study developed a procedure to identify UPD crashes from Florida crash databases, as shown in Figure .  

Crash reports for commercial vehicle crashes are available in the Signal Four Analytics (University of Florida, 

2021) system. Based on the interested area and year, commercial vehicle crash reports were downloaded for 

four years (2016–2019) in Florida Department of Transportation (FDOT) Districts 1, 2, 4, 5, 6, and 7. The crash 

reports includes data fields that indicate if a delivery vehicle was involved in a commercial vehicle crash, 

including: 

• Make and model of vehicle in a crash 

• Motor carrier name and address of vehicle in a crash 

• Commercial usage code 
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UPD Travel Demand Model

UPD Crash Model

Implementation of Innovative 
UPD modes Change of Surface UPD Traffic

Change of UPD Crashes
Change of Non-Recurring 

Congestions

Non-Recurring Congestion Model 

 

Figure 5-1 Analysis framework for assessing impacts of innovative UPD modes  
on safety and non-recurring congestion 

Examples of critical data fields are shown in Figure 5-2. As the total number of crash reports is more than 

100,000, manual review each report is very time consuming. Thus, a UPD crash identification tool based on 

optical character recognition (OCR) and key word matching was developed based on Python.  

 
 

 
 

Figure 2-2 Examples of critical data fields in Florida crash reports 

Critical steps in identifying UPD crashes are as follows: 

• OCR Text Extraction – crash reports downloads from Signal Four Analytics in PDF format; this 

component converts the PDF files into images, then uses OCR technology to detect the text from 

images.  

• Text Filter – Key words in specific boxes are crucial to identifying UPD crashes. A quick way to select 

UPD crashes from more than 100,000 crashes report is to monitor these specific boxes and the crash 

narrative. In this component, a key word library and two key word matching mechanisms were 

designed to support UPD crash identification: 
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- Keyword generation – A keyword library is generated for keyword matching. Based on observation 

of UPD crashes reports, key words always include commercial delivery company name and address 

and specific words such as “Amazon,” “UPS,” “delivery truck,” “parcel delivery,” etc.; thus, a library 

contains major commercial delivery company information and UPD-related words are designed. 

Keyword matching based on this library is applied on each crash report. 

- Exact matching – This mechanism checks if there is a word in a crash report that exactly matches 

any word in the keyword library. If there is a word in the data fields or crash narrative that exactly 

matches the keyword library, it is identified as a UPD crash.  

- Fuzzy matching – Crash reports can be handwritten or printed; handwriting varies due to different 

writing habits, so text recognition accuracy can be jeopardized, e.g., “ups” can look like “aps” and 

detected as “aps.” Hence, a fuzzy keyword matching is essential. Fuzzy keyword matching uses a 

similarity indexing score (0–100; 0 is totally unmatched, 100 is exactly matched) to compare words 

between crash reports and the keyword library. A threshold is defined to consider whether two 

words are the same. A similarity indexing score over the threshold (80) is consider as matched. A 

similarity indexing score of 50–80 is considered plausible for further review. Fuzzy keyword 

matching is developed based on the FuzzyWuzzy Python library (Fuzzywuzzy, 2021). 

• Manual Review – A text filter outputs the labeled UPD crashes that may contain false positive cases 

because of fuzzy keyword matching. The number of labeled UPD crash reports is limited; therefore, 

false positives should be removed by manual review. In addition, plausible UPD crashes are reviewed to 

confirm they are truly UPD crashes. 

Identified UPD crashes are summarized in 5-1. 

Table 5-1 Summary of Identified UPD Crashes 

Year Crash Type District 1 District 2 District 4 District 5 District 6 District 7 

2016 
Commercial crashes 5214 4829 8238 7318 8546 4728 

UPD crashes 77 98 86 112 141 73 

2017 
Commercial crashes 5579 5163 8670 8056 9182 4970 

UPD crashes 80 116 131 131 142 96 

2018 
Commercial crashes 5703 5005 9219 8482 8662 5449 

UPD crashes 96 117 143 69 158 98 

2019 
Commercial crashes 5825 5023 8234 8571 8832 5382 

UPD crashes 104 123 138 163 165 101 
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Commercial 
Vehicle Crash 

Reports in PDF 
format

OCR Text
Extraction

Keyword Generation
• Major delivery vendor names and their variants

• UPS, USPS, FEDEX, DHL, Amazon,  

• Can be expanded in future studies

• Covert PDF to images

• Process images with OCR technologies

• Extract plain text contents

• Output searchable crash reports in plain texts

Exact Matching

• Scan all crash reports

• Check critical data fields and narrative

• If there is any word exactly match the keyword, label it as 
UPD crash reports 

If matched

Manual Review

Fuzzy Matching

• Scan the unmatched crash reports

• Compare words similarity in critical data fields and narrative

• If similarity indexing score >  80, label it as UPD crash 

reports；If similarity indexing score between 50 to 80, label it 
as plausible report

 

Yes

No

Identified UPD 
Crashes 

• Manually review plausible crash reports

• Check the entire crash report to verify if it is a UPD crash

 

Figure 5-3 Procedure for UPD crash identification 

Development of Preliminary UPD Crash Models 

The risk of UPD crash occurrence is a function of UPD vehicle exposure (trips), traffic patterns, and roadway 

characteristics, and others. Given the reduction of UPD vehicle exposure due to new UPD technologies, it could 
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estimate the change of the UPD crash risk using the function. This study developed a statistical model to 

describe the relationship between UPD crash frequencies and contributing factors. The statistical model was 

developed at the traffic analysis zone (TAZ) level considering two factors: 

• UPD crashes are extremely rare and random events. A small spatial unit (roadway segment) may result 

in the zero-inflation issue that predominate units have zero observations of UPD crashes. To avoid the 

biased and inconsistent estimation caused by the zero-inflated issue, this study adopted a bigger spatial 

unit (TAZ) as the analysis unit. 

• Many UPD crashes occur on minor roads (local streets, private roads, etc.), and existing roadway 

databases do not include these minor roads. It is difficult to obtain roadway characteristics for these 

facilities (i.e., AADT, geometry, etc.) from the databases. The research team analyzed UPD crashes in a 

relatively large unit (TAZ) to avoid missing UPD crashes on minor roads. 

Although this study identified UPS crashes for four FDOT Districts, it was impossible to build models across all 

Districts due to the work in matching demographic, geometry, and traffic data to each zone. Thus, model 

development was based on data collected in Hillsborough County, which is the fourth most populous county in 

Florida (in FDOT District 7). The modeling procedure is shown in Figure 5-4. 

Traffic Analysis Zone 

(TAZ) in Hillsborough 

County

UPD Crashes in 

Hillsborough County 

Matching UPD Crashes

• Import TAZ and UPD crashes into ArcGIS

• Spatial join UPD crashes to each TAZ

• Count UPS crashes in each TAZ

Matching Roadway and 
Traffic Data

• Import traffic and geometry data from FDOT RCI 
databases into ArcGIS

• Spatial join traffic and geometry data to each TAZ

• Calculate average traffic and geometry in each TAZ

Data Assembly
• Merge UPD crash data, traffic data, and roadway data 

into one table

• Each row represents a TAZ

FDOT Roadway 

Characteristics 

Inventory (RCI) 

Database

Modeling

 

Figure 5-4. Procedure for data merging and modeling 
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Data Preparation 

The identified UPS crashes were spatially joined (point to polygon) into each TAZ in ArcGIS Pro. The number of 

UPS crashes falling in a TAZ was counted as the UPS crash frequency for four years in the TAZ. Figure 5-5 shows 

the spatial join between UPD crashes and TAZs in Hillsborough County. 

 

Figure 5-5 Spatial join between UPD crashes and TAZs in Hillsborough County 

In addition to UPS crashes, traffic data (AADT, truck percentage) and geometry data (speed limit, number of 

through lanes) were also spatially matched to each TAZ. As one TAZ may contains one or more traffic/geometry 

features, the average of traffic/geometry data was calculated for each TAZ. An example of calculating average 

AADT is given in Figure 5-6. Calculation of average speed limit, number of lanes, and truck percentage are 

similar. 

 

Figure 5-6 Example of calculating average AADT for TAZ 
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Except for crash, traffic, and geometry data, demographic data (projected in 2015) were also matched from the 

US Census 2010. The matched data are shown in Table 5-2. 

Table 5-2 Descriptive Statistics of Matched Data 

Variable (N=779) Mean SD 

UPD crash frequency for four years (2016–2019) 0.489 0.848 

Population density (per 10,000 sf)  1.091 1.030 

Natural logarithm of dwelling units less than 2 indicator (1 if value less than 2; 0 otherwise) 0.047 0.212 

Natural logarithm of dwelling units between 2–6 indicator (1 if value between 2–6; 0 
otherwise) 

0.343 0.475 

Natural logarithm value of dwelling units greater than 6 indicator (1 if value greater than 6; 
0 otherwise) 

0.610 0.488 

Averaged AADT of TAZ at 10,000 multiplies 2.192 1.110 

Averaged speed limit of TAZ (mph) 41.582 6.864 

Percentage of truck traffic during peak hours greater than 13% indicator (1 if value than 
13%; 0 otherwise) 

0.035 0.185 

Average number of lanes of TAZ 1.900 0.323 

 

Model Development 

As the dependent variable (UPD crash frequency) is count data with overdispersion (variance greater than 

mean), the negative binominal (NB) model is a natural selection for modeling UPD crashes. A stepwise 

procedure was used to select explanatory variables at a significance level of 90 percent or more. The fitted NB 

model is shown in Table 5-3.  

 Table 5-3 Fitted Negative Binomial Mode for UPD Crashes 

Variable Coefficient z p-value 95% CI 

Constant -0.407 -0.800 0.424 [-1.406, 0.591] 

Population density -0.232 -2.41 0.016 [-0.420, -0.043] 

Categorized natural logarithm value of dwelling less than 
2 indicator 

0.707 2.66 0.008 [0.187, 1.228] 

Categorized natural logarithm value of dwelling between 
2–6 indicator 

Baseline 

Categorized natural logarithm value of dwelling greater 
than 6 indicator 

0.344 2.31 0.021 [0.052, 0.637] 

Average AADT of TAZ 0.317 4.81 0.000 [0.187, 0.446] 

Percentage of truck traffic during peak hours greater than 
13% indicator 

0.640 2.31 0.021 [0.098, 1.182] 

Average speed limit of TAZ -0.026 -2.12 0.034 [-0.050. -0.001] 

Dispersion parameter (α) 0.841   [0.545, 1.299] 

Model Statistics 

Number of observations 779 

Log-likelihood -714.332 

Pseudo R2 0.027 
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The formula for predicting expected UPD crash frequency is given below: 

𝑌 =  𝑒−0.407−0.232∙𝑃𝐷+0.707∙𝐷𝑈1+0.344∙𝐷𝑈2+0.317∙𝐴𝐴𝐷𝑇+0.64∙𝑇𝐹−0.026∙𝑆𝑃𝐿𝑀𝑇 

where  𝑌 is the expected UPD crash frequency for four years; 𝑃𝐷 is the population density (per squared feet); 

𝐷𝑈1 is the indicator of the natural logarithm of dwelling units < 2; 𝐷𝑈2 is the indicator of the natural logarithm 

of dwelling units > 6; 𝐴𝐴𝐷𝑇 represents the average Annual Average Daily Traffic at 10,000 multiples; 𝑇𝐹 is the 

indicator of truck percentage > 13; and 𝑆𝑃𝐿𝑀𝑇 is the average speed limit. 

The fitted model (Table 5-3) indicates that demographic characteristics (population density and dwelling units) 

significantly influence the likelihood of UPD crash occurrence. However, the impacts of these factors are 

counterintuitive—UPD crash frequency is more likely to decrease with an increase in population density, and 

the middle dwell unit range (2 < the logarithm of dwell units < 6) experiences the lowest UPD crash frequency 

than the smallest dwell unit and the largest dwell unit ranges.  This finding indicates that population density 

and dwell units are not indictors of UPD demand. Theoretically, more population and more dwell units imply 

more frequent UPD travel and, consequently, high UPD crash frequencies. Some unobserved factors that 

associate with population density and dwell units may cause this counterintuitive result. For example, high 

population density areas may have more roads with high safety standards; thus, UPD crashes may be reduced. 

More detailed data are needed to address the impacts of demographic factors on UPD crash frequencies. 

AADT and truck percentage, which can be used as rough indicators of UPD exposures (assuming that UPD traffic 

is proportional to the two factors), present significant impacts on UPD crash frequencies. With an increase in 

AADT, UPD crash frequencies tend to increase. If truck percentage is higher than 13 percent, the likelihood of 

UPD crash frequencies is more likely to increase.  

Average speed limit indicates the distribution of roadway classifications in a TAZ—the higher the average speed 

limit, the more high-class roads exist in the TAZ. The model implies that a TAZ with more high-class roads, 

which usually have high safety standards and UPD vehicles with relatively fewer stops, tend to experience a low 

UPD crash frequency.  

Conclusions 

This study preliminarily explored UPD crashes and identified contributing factors to UPD crash occurrence. The 

developed analysis framework and prediction model can be used as the basis for assessing the safety impacts 

of innovative UPD technologies. There are still some limitations that need to be addressed in future research: 

• No UPD travel data or model was found to estimate UPD traffic. The fitted model had to use 

alternatives to roughly indicate UPD travels. In the Phase II study, the research team will search for or 

develop UPD traffic data or models to improve the performance of the model and connect to the 

change of conventional UPD exposures due to implementing innovative UPD technologies. 

• This study did not assess the impacts of UPD crashes on non-recurring congestion. The Phase II study 

will explore a method to estimate non-recurring congestion caused by UPD crashes. 

• Identification of UPD crashes included major delivery vendors (DHL, FedEx, UPS, USPS, Amazon). 

However, small delivery vendors such as food delivery might be missed. The Phase II study will expand 

the keywork library to include more types of delivery crashes.    
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 Contributions and Impacts 
The models for urban congestion developed from this research project are sensitive to urban delivery activities. 

They can assess how current delivery activities contribute to urban congestion and how the alternative delivery 

activities alleviate traffic congestion in urban areas in terms of congestion reduction percentage or reduction of 

vehicle hours. The zone-based incident/accident models can be used to estimate incidents/crashes under 

current delivery activities and reduction of incidents/crashes under alternative delivery scenarios.  

This research starts with modeling the demand of e-commerce behaviors by analyzing how different 

characteristics are impacting food or non-food travel behaviors before and after pandemic. With increasing 

demand of online shopping results from burgeoning e-commerce and pandemic, the research follows by 

measuring the impact of delivery service operations on urban congestion using macroscopic fundamental 

diagrams. Then, we work on urban operations strategies of drone deliveries to assess their potential of 

removing parcel delivery demand on the roads. More specifically, we propose a framework of UAV system 

traffic management in the context of parcel delivery in low-altitude urban airspace, including clustering-based 

UAV path planning, systematic UAS traffic management with conflict resolution, and mechanism design for 

airspace resource allocation. Lastly, we focus on assessing safety impacts, including non-recurring congestion 

reductions, of innovative UPD technologies. 

Contributions  

For each of the four parts summarized above, we present the main findings and contributions. In the first part 

of demand models of e-commerce behaviors, our results show the solution to 1) how demographic 

characteristics affect pandemic shopping behavior, 2) how near-term shopping behaviors might play out in the 

longer term, and 3) new opportunities for partnering between public and private stakeholders around the curb. 

For example, model results indicate that prior to the pandemic, higher income households were less likely to 

shop only online for non-food items, whereas after the pandemic these same households began substituting in-

person trips for online purchases. 

The second part of the study analytically approximates the impact of DSO on network capacity and compare 

the theoretical prediction to the network flow observed in simulation of street traffic. The impact of DSO on 

urban traffic was measured within the Macroscopic Fundamental Diagram (MFD) framework. The study shows 

the simulation results and the theoretical prediction for capacity with different numbers of DSO double-parked 

stops. The prediction from the model is in good agreement with the results of the simulation. In the future, the 

shape of the entire MFD as the result of DSO operations can be modeled. Second, a large number of possible 

DSO scenarios and their impacts for various network configurations can be modeled. Third, the MFD model can 

be used to compute arrival delay and air pollution values that result from delivery service operations. 

In the third part of urban operations strategies using drone delivery, we efficiently utilize the low-altitude 

airspace resources, and propose a framework of UAS traffic management including clustering-based UAV path 

planning, systematic UAS traffic management with conflict resolution, and mechanism design for airspace 

resource allocation. This work enables efficient traffic management of UAV systems when traffic demand 

partially shifted to the low-altitude urban airspace. It mitigates the congestion impact from truck and van 

traffic, as well as reduce costs and travel times. In addition, the familiar issues of urban street congestion, in the 
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future we may also see congestion above the city from UAV traffic, as use of these vehicles for urban package 

delivery and other purposes intensifies.  

In the last part of study, we propose a framework for assessing safety impacts, including non-recurring 

congestion reductions, of innovative UPD technologies. The framework can be used to comprehensively 

evaluate the benefits of new UPD modes and provide decision making support to develop and implement the 

new technologies. This study also developed a procedure based on Fuzzy language processing technologies to 

identify UPD crashes from historical crash databases. The identification procedure addresses the most 

significant challenge in UPD safety management and analysis and provides reliable UPD crash data. A statistical 

model was developed based on the identified UPD crashes that estimates UPD crash frequencies for a TAZ 

given demographic, roadway, and traffic characteristics of the TAZ.  

Impacts 

The models of urban congestion developed from this research project can benefit practitioners from several 

perspectives. 1) By modeling the demand of e-commerce behaviors, the results can aid planners and 

policymakers in understanding both short- and long-term effects of pandemic-induced changes to shopping 

behavior in mid-sized cities/regions. The information can also give recommendations to practitioners when 

making decisions. For example, the results recommend that it will be important to track growth of the e-

commerce industry in the longer term, to better understand if e-commerce will replace existing trips, 

complement them, or induce more new trips and to identify whether delivery drivers or individual customers 

will be making greater use of the curb space in front of commercial businesses. It will be key to balance the 

needs of all types of curb users and keep safety — both viral and traffic-related — a priority. At present, many 

COVID-19 testing facilities are currently using re-purposed surface parking lots, providing examples from which 

retail businesses and planners can learn. In the longer term, the re-purposing of parking lots to higher and 

better uses, such as housing, is warranted. 2) Measuring the impact of DSO on network capacity gives 

practitioners a quantitative sense of the arising problems including double parking, longer VMT, causing traffic 

bottlenecks etc. Understanding the causes of congestion problems help make policy decisions. 3) The proposed 

framework of using drone delivery to remove road delivery traffic provides practitioners a solution to reduce 

urban congestion from parcel delivery. The traffic management framework of efficiently assigning schedules 

and resolving conflicts can serve as a preliminary study to develop operational tools to be applied in practice. 4) 

The study of the comprehensive assessment of innovative UPD modes including the developed framework, 

identification method, and statistical model can be the basis of future studies.     
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national leader in providing multimodal congestion reduction strategies 
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big data science and innovative transportation options to optimize the 

efficiency and reliability of the transportation system for all users. Our 

efficient and effective delivery of an integrated research, education, 

workforce development and technology transfer program will be a model 

for the nation. 
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